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Abstract. We study the self-consistency problem of the generalized Feynman rule (nonperturbatively mod-
ified vertex of zeroth perturbative order) for the 4-gluon vertex function in the framework of an extended
perturbation scheme accounting for non-analytic coupling dependence through the Λ scale. Tensorial struc-
ture is restricted to a minimal dynamically closed basis set. The self-consistency conditions are obtained
at one loop, in Landau gauge, and at the lowest approximation level (r = 1) of interest for QCD. At this
level, they are found to be linear in the nonperturbative 4-gluon coefficients, but strongly overdetermined
due to the lack of manifest Bose symmetry in the relevant Dyson-Schwinger equation. The observed near
decoupling from the 2-and-3-point conditions permits least-squares quasisolutions for given 2-and-3-point
input within an effective one-parameter freedom. We present such solutions for NF = 2 massless quarks
and for the pure gluon theory, adapted to the 2-and-3-point coefficients determined previously.

1 The generalized Feynman rule Γ
[r,0]
4V

The present paper continues, and brings to a provisional
stage of completion, the determination of generalized
Feynman rules in an extended perturbation scheme for
QCD [1], designed to account for the strongly nonanalytic
coupling dependence of correlation functions through the
renormalization-group invariant mass scale Λ. The gen-
eralized rules, denoted Γ [r,0], are proper vertex functions
of zeroth perturbative order (no power corrections in the
coupling g2, as indicated by the index 0), but with a non-
perturbative Λ dependence which in turn is approximated
systematically at a level characterized by the index r. In
contrast to the ordinary Feynman rules, it is a nontriv-
ial self-consistency problem for these extended rules to
reproduce themselves in the integral equations for vertex
functions. However, the divergence-related mechanism op-
erative in the self-reproduction [1] does ensure that forma-
tion of Γ [r,0]’s remains rigorously restricted to the small
number of vertices corresponding to the ordinary Feynman
rules – the superficially divergent vertices. In the compan-
ion paper [2], this self-consistency problem was set up and
solved for the vertices with up to three external legs, on
the lowest nontrivial approximation level (r = 1, and one
loop) of interest for QCD.

Below, we complement this study by examining the
highest superficially divergent amplitude, the 4-vector (4-
gluon) vertex Γ4V [3]. There are several features that
set this vertex function apart and motivate its separate
treatment. One is its sheer kinematical complication, due
partly to the large number of 6 Lorentz-scalar momen-

tum variables, but mostly to the exorbitantly lengthy ten-
sor decompositions implied by its 4 color and 4 Lorentz
indices. In constructing the r = 1 approximant Γ

[r,0]
4V

(Sect. 2), one is thereby forced to adopt a theoretically mo-
tivated simplification of the full tensor structure. Another
special feature is that Γ4V represents the lowest QCD am-
plitude which in the nonperturbative context exhibits the
phenomenon of compensating poles (or, in the terminology
of [2], of negative shadow poles), first noted in Abelian
models in [4]. While these poles can be inferred uniquely
already from the “lower” DS equations for Γ3V and Γ2V by
suitable residue- taking operations, it is now necessary to
demonstrate that on the level of the 4-point equation they
are in turn self-consistent (Sect. 3). A natural by-product
of this demonstration is then a “reduced” integral equa-
tion for the remainder vertex V4V defined by

Γ
[r,0]
4V = −(C [r]

1 )2V,2V − (C [r]
2 )2V,2V

− (C [r]
3 )2V,2V + V

[r,0]
4V , (1.1)

where C
[r]
1,2,3 are the shadow-pole terms in the 3 chan-

nels of the 4-gluon amplitude. This amounts to rearrang-
ing the full connected-and-amputated 4-gluon correlation
function as

T4V = A′1 +A′2 +A′3 + V4V , (1.2)

where A′1,2,3 are “softened”, i.e. one-shadow-irreducible,
one- gluon exchange diagrams formed by subtracting the
shadow-pole term from the ordinary dressed-one-gluon-
exchange diagram A1,2,3 in each of the 3 channels. The
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object V [r,0]
4V depends on only four Lorentz- scalar vari-

ables, and establishing the self-consistency conditions for
its nonperturbative coefficients (Sect. 4) is simpler than
for the full Γ4V .

The latter conditions will exhibit a problem that pre-
sumably besets all approximate treatments of vertex equa-
tions with three or more external lines: if such vertices pos-
sess a symmetry among their external legs such as Bose
symmetry, their Dyson-Schwinger (DS) equations will in
general not display this symmetry manifestly, and any
approximation to them will produce unsymmetric terms.
Forcing self-reproduction of a symmetric input by requir-
ing these terms to vanish leads to overdetermination of
the dynamical conditions. If this does not happen to be
counteracted by underdetermination tendencies, as was
the case for the r = 1 three-point conditions derived in
[2], one must settle for a “compromise” solution in the
sense of least-squares error minimization (Sect. 5).

Technically, the self-consistency conditions will be de-
rived at the r = 1 and one-loop (l = 1) levels, and in Lan-
dau gauge. The latter again provides considerable simpli-
fication because with this gauge fixing the two ghost ver-
tices at one loop remain perturbative, and because a closed
DS system can be written for the amplitudes with only
transverse (if any) gluon legs, whose tensorial complexity
is significantly lower. A disadvantage, of course, is that
the self-consistency (or lack of it) for statements concern-
ing longitudinal-gluon amplitudes, such as Slavnov-Taylor
(ST) identities at finite momenta, cannot be checked di-
rectly from such a system. Differential four-gluon ST iden-
tities with one momentum vanishing, which to our knowl-
edge have not been studied so far, would, in analogy to
the 3-gluon case, constrain also the fully transverse vertex
if one imposes certain regularity assumptions in addition
to BRS invariance. In the present paper we do not con-
sider these identities; since their kinematical complexity
is of the same order as for the vertex itself, they represent
a large problem in themselves that must form a subject of
future study.

The 4-gluon vertex also occupies a special position in
that it belongs both to the class of superficially diver-
gent “basic” vertices having their own (ordinary or ex-
tended) Feynman rules, and to the class of amplitudes
capable of developing bound-state (here, glueball) poles
– a phenomenon otherwise restricted to the superficially
convergent higher vertices. In the present paper we are ex-
clusively concerned with the generalized Feynman rule, a
zeroth-order quantity, which like its ordinary counterpart
contains no information as yet about bound states. The
latter, if present, arise from an infinite partial resumma-
tion of the higher-order, quasi-perturbative corrections

[g(ν)2]p · Γ [r,p)
4V ({k}, Λ, ν) (p = 1, 2, 3, . . .). (1.3)

As the notation recalls, these have their own nonpertur-
bative Λ dependences, which may be complemented by
an inversely logarithmic “perturbative” dependence when
reparametrizing the quasi-perturbative series in terms of
αs(k2) rather than g2(ν). Upon ladder or similar resum-
mation, these may build up a pole in some Mandelstam

variable (the squared sum of some subset of the momenta
{k}) at some multiple of Λ2 representing the square of a
bound-state mass. Such a pole is accompanied by a pair
of residue functions, each representing an infinite power
series in g2 starting at least with p = 1. It is therefore
an example of nonperturbative Λ dependence embedded
in an otherwise quasi-perturbative term (starting at least
at order p = 2) of the amplitude. These characteristics
should prevent confusion between bound-state poles and
the poles which in the present scheme arise as rational
approximations to branch cuts in the squares of single-
external-line momenta, and in zeroth quasi-perturbative
order. The 4-gluon function is unique in exhibiting both
phenomena. It is yet another matter (and not touched
upon in this article) that in a confining theory the cal-
culation of S-matrix elements will require a still larger
set of generalized Feynman rules, comprising hadron-to-
quarks and hadron-to-gluons bound-state vertices for the
outer corners of S-matrix diagrams – vertices of an in-
trinsically hybrid nature, since their dependence on the
squares of single-quark momenta would have to be deter-
mined and approximated consistently with the generalized
Feynman rules for the internal lines and vertices, whereas
their dependence on the total virtuality of the bound state
is governed by “resummed-perturbative” bound-state dy-
namics.

2 Structure of the r = 1 approximant

Due to the large number of possible tensor structures of
a four-gluon amplitude (e.g., 43 independent Lorentz ten-
sors for a fully transverse amplitude, each combined with
8 independent color tensors for SU(3)C), one is forced,
at the present stage, to adopt some theoretically moti-
vated restriction to a smaller subset of tensors. We briefly
describe such a restricted form, partly repeating mate-
rial from Appendix A of [1] to keep the discussion self-
contained. The amplitude(
V

[r,0]
4V (p1, p2, p3, p4)

)κλµν
abcd

(p1 +p2 +p3 +p4 = 0) (2.1)

is expanded over an 18-member set of color ⊗ Lorentz
tensors, of which 15 are linearly independent. They are
formed from building blocks

C
(i)
abcd L

κλµν
(j) (i = 1 . . . 6, j = 1 . . . 3), (2.2)

where the color tensors C(i), fourth-rank objects over the
adjoint representation of SU(3)C , are given by

C
(1)
abcd = δab δcd , C

(2)
abcd = δac δdb ,

C
(3)
abcd = δad δbc , (2.3)

C
(4)
abcd = fabnfcdn, C

(5)
abcd = facnfdbn,

C
(6)
abcd = fadnfbcn, (2.4)

in terms of the SU(3) structure constants fabc. Only five of
these are linearly independent, since C(4)+C(5)+C(6) = 0
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by the Jacobi identity. As compared to the most general
structure, this set omits three tensors containing a sym-
metric SU(3) structure constant dabc. The Lorentz-tensor
building blocks L(j) are the three dimensionless ones,

Lκλµν(1) = δκλδµν , Lκλµν(2) = δκµδνλ,

Lκλµν(3) = δκνδλµ, (2.5)

which are linearly independent. In obvious ways, all these
fall into crossing triplets, where second and third members
in each triplet arise from the first member by the crossing
operations,

“ s → u “ : (2, 3, 4)→ (3, 4, 2), (2.6)
“ s → t “ : (2, 3, 4)→ (4, 2, 3), (2.7)

the s channel being by convention the (1 + 2) ↔ (3 + 4)
channel. Here 2 stands for the set (p2, λ, b), etc.

The set (2.2–2.5) is distinguished in that it constitutes
the smallest dynamically closed subset of the full tensor
structure, i.e.:

(i) It closes under Bethe-Salpeter (BS) iteration in each
of the three channels of the amplitude, as exemplified by
the s-channel, color-space multiplication,

(
C(i) · C(j)

)
abcd

=
8∑

e,f=1

C
(i)
abef C

(j)
efcd , (2.8)

and closes also under iteration of DS interaction dia-
grams, provided the 3-gluon vertices involved have fabc
color structure only. We emphasized earlier [2] that with 4-
gluon color dependence restricted to the five-dimensional
basis (2.3/2.4), it would be inconsistent to retain dabc color
structure in the 3-gluon vertex, since the tensors omitted
on the 4-gluon level would also contribute to that structure
via the hierarchical coupling in the 3-gluon DS equation.

(ii) It closes under the crossing operations connecting
the three channels, as given by (2.6) and (2.7).

(iii) It contains the perturbative zeroth-order vertex,
namely,

Γ
(0)pert
4V =

3
2
C(4)

(
L(2) − L(3)

)
+

1
2

(
C(5) − C(6)

) (
−2L(1) + L(2) + L(3)

)
. (2.9)

(Without this property, there would exist a still smaller
dynamically closed set comprising only the tensors (2.3),
but maintaining the perturbative limit calls for inclusion
of (2.4)). All these statements are easy to verify by direct
calculation.

While this closedness property represents the primary
motivation for the use of the dynamically minimal tensor
basis, additional motivation for the choice (2.5) of Lorentz
tensors comes from the observation that these are the only
ones accompanied by invariant functions of zero mass di-
mension. The tensors omitted in (2.5) contain two or four
powers of momentum, and are thus associated with in-
variant functions of mass dimensions −2 or −4. Since our

approximants contain the dimensionful Λ scale, this does
not yet imply that loop integrals contributing to these
functions must all be convergent, but inspection shows
that possibilities for the formation of such tensor struc-
tures are nevertheless strongly restricted. First, the re-
quirement of asymptotic freedom despite the presence of
positive momentum powers in the tensor, together with
the fact that zeroth-order forms must have at least one
power of Λ2 in each term, leaves few allowed terms in the
first place for approximants to such invariant functions.
Second, for each particular allowed term, possibilities for
it to emerge with a divergent-integral factor from the r.h.s.
of the relevant DS equation, as necessary for zeroth-order
self-reproduction, turn out to be very limited if existent
at all. As an example, consider a term of type

[δκλ pµ4 p
ν
3 ]× Λ2

(p2
3 + u2Λ2) (p2

4 + u2Λ2)
, (2.10)

which may be present in the fully transverse V4T and is
allowed by its large-momentum behavior. It is straightfor-
ward to check that in the integral equation (Fig. 10 below)
we are going to use for V4T , the DS terms with only three-
point vertices – diagrams (A2)4, (C1)4, (E1)4, (E1′)4 –
cannot produce a zeroth-order term of this form: the two
denominator factors of (2.10) can come only from two
different three-point vertices, but then each of them will
bring at least one Λ2 factor, and the remaining, dimen-
sionless loop integral cannot factor out the two numerator
momentum components without becoming convergent. On
the other hand the DS diagrams where V4V itself enters
– diagrams (A3)4, (C2)4 and the E element of diagram
(A1)4 in Fig. 10 – can produce such a term but only, by
the same logic, where it is already pre-existent as part of
a V 4 term and can factor out as a whole while leaving a
logarithmically divergent integral. It is easy to check that
this leaves only the possibilities for the above term (i) to
“feed on itself” or (ii) to feed on terms of the more com-
plicated form

[pκ2 p
λ
1 p

µ
4 p

ν
3 ]× Λ2

(p2
1 or 2 + u2Λ2) (p2

3 + u2Λ2) (p2
4 + u2Λ2)

,

(2.11)

with a dimension-4 tensor. Such terms, in turn, have still
more restricted possibilities for self-reproduction in that
they can only “feed on themselves” through the E element
of term (A1)4. But on the one-loop level, where the curly
bracket of (A1)4 does not yet depend on four-gluon co-
efficients, this means that the equation for the coefficient
of (2.11) is linear and homogeneous, and generically (i. e.
except for improbable special configurations of 2- and 3-
point coefficients) permits only the trivial, zero solution.
Then, however, the equation for the coefficient of (2.10)
also becomes linear and homogeneous, and one concludes
that on the one-loop level of the self-consistency prob-
lem, these two types of terms do not reproduce in zeroth
order. Without going through the large number of other
special cases, we remark that in view of such restrictions it
makes sense, as a first step, to stay with the dimensionless
Lorentz tensors (2.5), at least to one-loop order.
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Invariant functions for the V4V amplitude, we recall,
have zeroth-order rational structure only with respect to
the variables p1

2 . . . p4
2, since the entire zeroth-order ra-

tional structure with respect to s, u, t variables is borne
by the compensating-pole terms of (1.1). Since our earlier
demonstration of this applies, strictly speaking, only to
the color-octet channels, we check in Appendix A of this
paper that in fact it holds generally. Thus at order r = 1,
all invariant functions involve the same, fully symmetric
denominator

∆[1,0] =
(
p1

2 + u′′2Λ
2
) (
p2

2 + u′′2Λ
2
)

×
(
p3

2 + u′′2Λ
2
) (
p4

2 + u′′2Λ
2
)
. (2.12)

Numerator polynomials in Λ2 and the squared momenta,
of mass dimension 8, must conform to the restrictions of
naive asymptotic freedom. As seen in [2] in the example
of the 3-gluon vertex, additional restrictions arise from
the requirement that “softened” (one-shadow-irreducible)
one-gluon exchange diagrams, which represent the physical
one-gluon exchange mechanism, again should not gener-
ate higher-than-perturbative degrees of divergence when
inserted in loops (for an example, see the right-hand por-
tion of diagram (A3)4 in Fig. 10): this excludes terms in
the rational approximant in which any one squared mo-
mentum has a net positive power. Thus numerator poly-
nomials should not contain s, t, u either, nor should they
have terms of type Λ2p6

i or Λ4p4
i still allowed by the pri-

mary restrictions. At level r = 1, all zeroth-order rational
structure can then be expressed in terms of the single-pole
quantities

Πi =
Λ2

pi2 + u′′2Λ
2

(i = 1 , 2 , 3 , 4) , (2.13)

and the general r = 1 approximant becomes a sum of
terms, each featuring a product of a tensor of type (2.2)
and of an invariant function built from the quantities
(2.13).

With full Bose symmetry among the four legs imposed,
this approximant turns out to involve seventeen dimen-
sionless, real coefficients. There are several ways of arriv-
ing at this number, but the first step is always to realize
that each of the color tensors (2.3/2.4) and Lorentz ten-
sors (2.5) brings a definite partial permutation symmetry
within one channel, and thereby imposes a corresponding
partial symmetry on its accompanying factors. Consider
e.g. the s channel, and denote by the symbol

{π12, π34;πs} (each π = +1 or −1) (2.14)

the class of four-point amplitudes having parities
π12, π34, πs under the 1 ↔ 2, 3 ↔ 4, and (1, 2) ↔ (3, 4)
permutations respectively. Then the color tensor C(1) of
(2.3) has {+,+; +} symmetry. The accompanying Lorentz
tensors (2.5) can, with regard to this channel, be classi-
fied into L(1) and L(2) +L(3), which are in class {+,+; +},
and L(2)−L(3), which belongs to class {−,−; +} (it is part
of the special simplicity of the dynamically minimal basis
that it contains no tensors with πs = −). Then the way

the C(1) tensor can appear in the approximant is uniquely
fixed to read,

C(1)[L(1)S + (L(2) + L(3))S′ + (L(2) − L(3))A′′], (2.15)

where S, S′ are invariant functions, built from the ele-
ments (2.13), in class {+,+; +}, and A′′ is a function in
class {−,−; +}. Full Bose symmetry then requires adding
to (2.15) its inter-channel permutations (2.6) and (2.7);
this also fixes uniquely the occurrence of the color tensors
C(2), C(3). In an analogous way, the appearance of the
tensor C(4) of (2.4) is fixed uniquely as

C(4)[L(1)A+ (L(2) + L(3))A′ + (L(2) − L(3))S′′], (2.16)

where A, A′ are invariant functions in {−,−; +} and S′′

is in class {+,+; +}. Ignoring at first the linear depen-
dence in (2.4), full symmetrization is again achieved by
adding the permutations (2.6) and (2.7) with C(5), C(6)

color tensors. Now for each S-type invariant function
there are, at r = 1, five possible building blocks, namely,
in the notation of (B.1) to (B.4) of Appendix B.1, the
quantities G(1), G(2s), G(2u) + G(2t), G(3), G(4), whereas
for the A-type functions only one building block, namely
G(2u) − G(2t), is available. Thus for the moment we have
3 × 5 + 3 × 1 = 18 coefficients. To account for the lin-
ear dependence of the tensors (2.4) one eliminates, for
example, C(5) +C(6) in favor of −C(4), then alternatively
C(6) + C(4) in favor of −C(5); the two expressions, apart
from a permutation (2.6) of momenta, must display the
same coefficients. This turns out to impose one relation
between the coefficients of A, A′, S′′; the two other ways
of conducting the eliminations produce the same relation.
As stated, one ends up with 17 independent coefficients.

In the following we use two different representations
for V [1,0]

4V . The first can be viewed as a straightforward re-
grouping of the form arising from the enumeration just
described, and has building blocks with manifest Bose
symmetry but involving linearly dependent color tensors
internally; it uses and for our purpose defines the 17 inde-
pendent coefficients. It is thus suitable for the presentation
of the vertex as a generalized Feynman rule. This repre-
sentation uses a color tensor

C
(S)
abcd = tr (tatdtbtc ) + tr (tatctbtd ) (2.17)

and its crossing partners C(U), C(T ) obtained via (2.6) and
(2.7), where tn are the generator matrices of SU(3)C nor-
malized by tr(tmtn) = 1

2δmn. The latter trace is then used
to supply another tensor triplet, proportional to (2.3),

tr(tatb) tr(tctd) =
1
4
C

(1)
abcd, (2.18)

plus crossing partners. SU(3) representation algebra [6]
gives the relation of (2.17) to (2.3/2.4) as

C(S) =
1
12

[
C(1) + C(2) + C(3)

]
+

1
6

[
C(5) − C(6)

]
,

(2.19)
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with analogous relations for C(U), C(T ). In this basis,
which has been used e.g. in work on the operator-product
expansion [7], the vertex with four transverse gluon legs –
the portion of V4V which enters our purely transverse DS
system based on Landau gauge fixing – is written[
V

[1,0]
4T (p1 . . . p4)

]ρστω
abcd

= tρκ(p1) tσλ(p2) tτµ(p3) tων(p4)

×
{(

Γ
(0)pert
4V

)κλµν
abcd

+
17∑
n=1

ζn

(
W [1,0]
n (p 2

1 . . . p
2
4 ;Λ2)

)κλµν
abcd

}
,

(2.20)

with the index T , as opposed to the generic V , now re-
ferring to transverse gluons, and with the t’s denoting
transverse projectors in the external momenta. (Since our
“minimal” tensor basis contains no tensors that would
be removed completely by the transverse projections, the
number of terms and coefficients in V4T remains the same
as in V4V ). Each of the building blocks Wn comprises a
color tensor (2.17) or (2.18) plus crossing partners, a com-
bination of Lorentz tensors (2.5), and a combination of
rational-function elements (2.13). Each therefore has at
least one overall power of Λ2 and vanishes in the pertur-
bative limit, Λ→ 0. A full listing of these building blocks
is relegated to Appendix B.1; here we write out just one
of them for illustration:

W
[1,0]
3 (p 2

1 . . . p
2
4 ;Λ2) = C(S)

(
L(3) − 2L(1) + L(2)

)
×
[
Π1Π4 +Π2Π3 − 2(Π1Π2 +Π3Π4) +Π1Π3 +Π4Π2

]
+C(U)

(
L(1) − 2L(2) + L(3)

)
×
[
Π1Π2 +Π3Π4 − 2(Π1Π3 +Π4Π2) +Π1Π4 +Π2Π3

]
+C(T )

(
L(2) − 2L(3) + L(1)

)
×
[
Π1Π3 +Π4Π2 − 2(Π1Π4 +Π2Π3) +Π1Π2 +Π3Π4

]
(2.21)

Note that these 17 building blocks are linearly indepen-
dent of each other; the linear dependence of the basis ten-
sors C(S,U,T ) affects only their internal structure, which
upon rewriting in terms of independent tensors would lose
its manifest crossing (and therefore Bose) symmetry. How-
ever, as a representation of the total V4V , (2.20) is based
on dependent color tensors.

The second representation is more suitable for the self-
consistency calculation of the zeroth-order vertex. To per-
mit tensor-by-tensor comparison of the two sides of a DS
equation, such a representation must employ linearly in-
dependent color tensors, and consequently forgo manifest
Bose symmetry. However, since the way a 4V vertex ap-
pears in a DS interaction diagram singles out one of the
three channels (compare, e.g., the 4V vertex in diagrams
(A3)4 or (C2)4 of Fig. 10), it is useful to maintain partial
symmetry properties within one channel. At first the en-
tire vertex is classified in this way, without worrying about
crossing. A basis of this kind, adapted to the s channel,
has color tensors

C(A) ≡ C(1), C(B) = C(2) + C(3),

C(E) = C(5) − C(6), (2.22)

C(C) = C(2) − C(3),

C(D) ≡ C(4)
(

= −C(5) − C(6)
)
, (2.23)

and Lorentz tensors (in D = 4−2ε Euclidean dimensions),

L(0) =
1
D
L(1), L(+) =

1
2
(
L(2) + L(3)

)
− 1
D
L(1),(2.24)

L(−) =
1
2
(
L(2) − L(3)

)
. (2.25)

The latter have been chosen to display, under s-channel
tensor multiplication, the projector-like properties,

Lκλρσ(m) Lρσµν(n) = δmn L
κλµν
(m) (m,n = +, 0,−). (2.26)

Among the fifteen product tensors C(i)L(j) formed from
(2.22/2.23) and (2.24/2.25) there are eight in class
{+,+; +} and seven in class {−,−; +}. In the decompo-
sition(
V

[1,0]
4T (p1 . . . p4)

)ρστω
abcd

= tρκ(p1) tσλ(p2) tτµ(p3) tων(p4)

×
∑

i=A...E

∑
j=+,0,−

C
(i)
abcd L

κλµν
(j) F

[1,0]
i,j (p1

2 . . . p4
2; Λ2) , (2.27)

the invariant functions Fi,j therefore again come in two
types,

F
[1,0]
(i,j)∈{+,+;+} = ηi,j,0 + ηi,j,1(Π1 +Π2 +Π3 +Π4)

+ ηi,j,2(Π1 +Π2)(Π3 +Π4)
+ ηi,j,4(Π1Π2 +Π3Π4)
+ ηi,j,5[Π1Π2(Π3 +Π4)+(Π1 +Π2)Π3Π4]
+ ηi,j,6(Π1Π2Π3Π4) ; (2.28)

F
[1,0]
(i,j)∈{−,−;+} = ηi,j,3(Π1 −Π2)(Π3 −Π4) . (2.29)

The perturbative limit (2.9) fixes the coefficients ηi,j,0 of
(2.28) as

ηi,j,0 = 3δi,Dδj,− + δi,E [ δj,+ − (D − 1)δj,0 ] . (2.30)

This representation then starts with a total of 8×5+7×1 =
47 real, dimensionless coefficients. With no further restric-
tions on the latter, it would be adequate for quantities
having partial Bose symmetry with respect to one distin-
guished channel, such as a two-particle irreducible kernel.
For the full V4V amplitude, imposing complete Bose sym-
metry by requiring equality with the two crossed forms
produces 30 relations between the η’s so they can ulti-
mately be expressed linearly in terms of the 17 indepen-
dent ζ’s of (2.20). The listing of these linear conversion
equations is relegated to Appendix B.2.

The r.h.s. of a DS equation such as Fig. 2 or Fig. 10
below, which singles out the leftmost external leg in an
unsymmetric way, does not even exhibit the reduced sym-
metry of (2.28/2.29) (although it does have a permutation
symmetry between the three rightmost legs). Upon using



406 L. Driesen, M. Stingl: Extended iterative scheme for QCD: the four-gluon vertex

(2.28/2.29) as input, the output therefore has still lower
symmetry, and enforcing the self-consistency of a sym-
metric vertex turns out to imply, in addition to 47 self-
reproduction conditions for the η’s, 7 more conditions for
the vanishing of output terms violating the partial Bose
symmetry, leading, after conversion of η’s to ζ’s, to a to-
tal of 54 linear conditions on the 17 independent coeffi-
cients. Moreover, one finds that unwanted contributions
to the eight constants (2.30) arise which represent low-r
approximation errors in the perturbative renormalization
constant, a phenomenon already encountered in [2] for the
three-point vertices.

Finally note that with respect to any one of the four
p 2
i , the reduced vertex permits a partial-fraction (p.f.) de-

composition, such as

V
[r,0]
4T = E

[r]
0,T (p 2

2 , p
2
3 , p

2
4 )

+
r∑

n=1

(
Λ2

p 2
1 + u′′2nΛ

2

)
E

[r]
n,T (p 2

2 , p
2
3 , p

2
4 ) , (2.31)

where by omitting p 2
1 dependence in the E0 term we have

encoded the restriction of no net positive powers of p 2
1 .

Such a decomposition is useful technically in connection
with the treatment of the compensating poles.

3 Self-consistency of compensating poles

It was demonstrated in [2] that from the lower (i.e., Γ3V

and Γ2V ) equations alone one may already infer the ex-
istence, and determine the residues, of certain pole terms
in Γ4V with respect to the three Mandelstam variables,
and that these turn out (as did similar poles in longitudi-
nal channels in the work of [4]) to be compensating terms
cancelling unphysical singularities (“shadow” poles) in the
one-gluon reducible terms of T4V . The compensating poles
are structures of tree topology which, since their internal
shadow lines are not propagators of any of the elementary
QCD fields, nevertheless can be present in the 1PI am-
plitude. This result is recalled in (1.1) and in Fig. 1(a),
where each double-wiggly line, at level [r, 0], stands for a
set of r shadow poles in the corresponding Mandelstam
variable.

To understand the nature of these structures more
fully, we now need to discuss how they reproduce self-
consistently in the DS equation for Γ4V itself. As with all
zeroth-order nonperturbative terms, this will essentially
occur through the hierarchical DS coupling, which trans-
fers the building materials for the compensating terms
down from the higher vertices in the equation. The ar-
gument is lengthy, but conveys an idea of how, by anal-
ogy, such terms establish themselves in still higher vertex
functions. We therefore present it also in lieu of a gen-
eral N-legs-amplitudes proof, whose length would be out
of proportion to the insight gained. (The reader not in-
terested in the details of this self-consistency result, and
willing to accept it on faith, may proceed directly to the
reduced DS equation for V4V given diagrammatically in
Fig. 10, which is the starting point for Sect. 4.)

Fig. 1. a,b (a) Decomposition of 4-gluon vertex into reduced
vertex and negative-shadow (“compensating”) poles. (b) De-
composition of partially irreducible 4-gluon amplitude T ′ into
reduced vertex, compensating pole, and softened 1-gluon ex-
changes

(1) The equation for Γ4V is written diagrammatically
in Fig. 2, in a “hybrid” form in which interaction terms
on the r.h.s. have not been resolved down to the level
of proper vertices: the T ′ amplitudes appearing there are
amputated functions 1PI in the channels defined by their
right-hand external legs, but otherwise still contain 1PR
terms. (A statement of a Γ4V equation for the pure Yang-
Mills case, and in a Bethe-Salpeter rather than DS form,
may be found in [5]). The equation is derived by the stan-
dard procedure of starting from the “gluonic” equation of
motion for the generating functional of covariantly quan-
tized QCD (the functional derivative in this equation de-
fines the distinguished, left-hand external leg in all terms
of Fig. 2), performing three further functional differentia-
tions with respect to the gluon field, putting all sources to
zero, and transforming the resulting equation to the con-
nected and finally to the 1PI function. In this process the
terms denoted by (C)4, (C ′)4, (C ′′)4, arise from the hier-
archical coupling to the full six-gluon correlation function
G6V ; the latter has disconnected pieces of type D ⊗G4V

which can contribute to the connected and the 1PI 4V -
function equations, whereas the also existing disconnected
G6V pieces of type G3V ⊗G3V are found to give only dis-
connected or 1PR terms for the 4V equation.

To keep technical complications to a minimum, we in-
voke all available simplifications: we disregard fermions,
i.e. the term (E)4 of Fig. 2, and consider zeroth-order self-
consistency only at one loop, where term (D)4 does not
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Fig. 2. DS equation for proper 4-gluon vertex in
compact form, featuring partially irreducible T ma-
trices

yet contribute, and in Landau gauge, so that the ghost
term (B)4 may also be omitted. (In principle, (B)4 can
contribute to the pole structures we are interested in,
but the ghost propagator and ghost vertex from which
the superficially convergent TGḠ3V amplitude must be
constructed remain perturbative in Landau gauge at one
loop, as discussed in [2]. In this situation the amplitude
therefore has no shadow terms, and the one-loop contri-
butions to (B)4 it produces remain equal to the perturba-
tive graphs and bring only the perturbative divergences).
We are then dealing, first, with terms (C)4, (C ′)4, (C ′′)4,
involving the four-gluon function itself in the form of
three T ′4V amplitudes, each one-gluon irreducible in the
channel defined by its two right-hand external legs. The
structure of such a T ′4V as following from Fig. 1(a) is
recalled in Fig. 1(b): it has one compensating (negative
shadow) pole in the distinguished channel, and “softened”
(one-shadow irreducible) one-gluon exchanges in the two
other channels.

(2) Second, we have term (A)4 involving a five-gluon
amplitude T ′5V , which by definition is one-gluon irre-
ducible in the four 2V ↔ 3V channels accessible through
its three right-hand external legs, namely the “horizontal”
channel

(5, 6)↔ (2, 3, 4) (i = 1) , (3.1)

and the three “tilted” channels

(2, 3) ↔ (4, 5, 6)(i = 2), (3, 4) ↔ (5, 6, 2)(i = 3),
(4, 2) ↔ (3, 5, 6)(i = 4). (3.2)

The integers i assigned refer, by convention, to a num-
bering i = 1 . . . 10 of the ten 2V ↔ 3V channels of a
five-point amplitude. Thus T ′5V has those one-gluon re-
ducible terms removed that would produce a one-gluon
reducible graph when introduced into term (A)4. A rep-
resentation of T ′5V suitable for our purpose is given di-
agrammatically in Fig. 3; it is again hybrid in that it
involves T ′4V amplitudes in addition to fully 1-gluon ir-
reducible functions Γ4V and Γ5V . The derivation of this
representation is a technical matter that we relegate to
Appendix C. (Its apparent asymmetry with respect to the
(5, 6) pair of legs is resolved by realizing that there exists
an equivalent representation with the roles of Γ4V and T ′4V
interchanged).

Insertion of Fig. 3 into the (A)4 term of Fig. 2 then
decomposes that term into a piece (A)4,Γ involving the
1-gluon irreducible Γ5V , plus six pieces with triangle-
graph topology. We do not draw this decomposition sepa-
rately. (In non-Landau gauges there would be, in addition,
a ghost term −(B)4,Γ involving a ΓGḠ3V vertex, minus
six ghost terms with box-graph topology, but as already
stated we do not further discuss such gauges for simplic-
ity).

(3) Now take residues in the Γ4V equation of Fig. 2
with respect to the squared momentum, p1

2, of the left-
most external leg. This is entirely analogous to the residue
comparison performed in [2] for the Γ3V equation, and
leads to the analogous conclusion: the zeroth-order pole
terms in p1

2 of the r.h.s. can arise only from the term
(A)4,Γ , and the Γ5V in that term must therefore contain
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Fig. 3. Representation of partially 1-gluon-
irreducible 5-gluon T matrix T ′5V . Γ5V denotes the
proper 5-gluon vertex. An equivalent representation
has the roles of Γ4V and T ′4V interchanged

zeroth-order poles (s1+u2nΛ
2)−1 (anticipating u′′2n = u2n)

in the Mandelstam variable of channel (3.1),

s1 = (−p5 − p6)2 = (p2 + p3 + p4)2 , (3.3)

which equals p1
2 by momentum conservation. Note that

terms with an inverse polynomial in p1
2 produced by

the loop integration of term (A)4,Γ , if any, would by
the standard formulas of dimensional integration have to
arise from convergent parts of the integral, and there-
fore would not trigger the self-consistency mechanism
for zeroth-order terms; they would be part of the first-
order, quasi-perturbative correction - a remark indeed
applying to all instances of generation of zeroth-order
terms.

The residues of Γ5V at those poles must be propor-
tional to the residue functions E [r]

n (p2, p3, p4)(1 ≤ n ≤ r)
in the p.f. decomposition of Γ [r,0]

4V analogous to (2.31). On
the other side they must be proportional to the residue
functions B[r]

n (p5, p6)(1 ≤ n ≤ r) of the three- point ver-
tex Γ3V ; this follows e.g. from the way the same Γ5V

amplitude enters in the two-DS-loops term of the three-
point equation (term (D)3 in Fig. 1 of [2]). For these
pole terms of Γ5V , the loop of (A)4,Γ then turns into
loops of self-energy type already encountered in the self-
consistency problem of Γ

[r,0]
2V , which fixes the propor-

tionality factors: the internal lines in the zeroth-order
pole terms of Γ5V with respect to s1 are associated with
factors

−S[r]
n (p1) = − 1

ur,2n+1

t(p1)
p1

2 + ur,2nΛ2

(n = 1 . . . r) , (3.4)

and therefore constitute minus a shadow line as defined in
Fig. 3(b) of [2].

(4) To demonstrate self-consistency of the three
negative-shadow terms in (1.1), we now feed the decompo-
sition of Fig. 1(a) into the various contributing terms on
the r.h.s. of Fig. 2 and verify that, upon appeal to informa-
tion from the “lower” DS equations, those terms cooperate
so that their sum splits off explicitly the same triplet of
negative-shadow terms; after cancelling them from both
sides of the equation, the remainder then constitutes a
DS equation for the reduced amplitude V4V .

The first place to feed in Fig. 1(a) is the Γ5V poles
just identified, with their E [r]

n residue functions. This turns
each of them into a pole with the corresponding reduced
E

[r]
n instead, minus a triplet of terms with two shadow

poles each, involving in addition to the B
[r]
n (n ≥ 1) a

set of functions B[r]
m,n defined by further decomposition of

these,

B[r]
m(p, q) = B

[r]
m,0(q) +

r∑
n=1

(
Λ2

p2 + ur,2nΛ2

)
B[r]
m,n(q)

(3.5)
Invoking now the full Bose symmetry of Γ5V , we see that
this vertex has a shadow-poles structure given, in a con-
densed notation, by
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Fig. 4. Decomposition of proper 5-gluon vertex into
reduced (1-gluon- and 1-shadow-irreducible) vertex
V5V , negative one-shadow terms in the 10 channels,
and positive two-shadows terms for the 15 (2+1+2)
partitions of the external legs

Γ5V = V5V

−
10∑
i=1

{ ∑
n

B[r]
n S[r]

n E[r]
n

}
i

(3.6)

+
15∑
k=1

{ ∑
m,n

B[r]
m S[r]

m B[r]
m,n S

[r]
n B[r]

n

}
k
,

where i enumerates the 10 channels, while k enumerates
the 15 different 2+1+2 partitions of the 5 legs. This struc-
ture is shown diagrammatically in Fig. 4. Note that the
symmetrization is achieved with only 15, not 30, of the
latter terms: since each of them has shadow lines in two
different channels, these are enough to supply the triplet
of contributions mentioned before to pole structure in all
of the 10 Mandelstam variables. The amplitude V5V de-
fined by (3.6) will be referred to as the reduced 5-gluon
vertex. As a superficially convergent vertex with all tree-
like structures removed by construction, it consists only
of superficially convergent loops. Since these, as empha-
sized repeatedly, do not support the self-reproduction of
zeroth-order terms, it is an exact statement that

V
[r,0]
5V = 0 (allr) . (3.7)

(5) The next place to feed in the assertion of Fig. 1(a),
or its consequence of Fig. 1(b), is the six terms of triangle
topology, arising from (A)4 of Fig. 2 upon insertion of
the 1-gluon-reducible terms in the 2nd and 3rd lines of
Fig. 3. Together with (3.6) and after some regrouping of
terms, this is equivalent to using a new representation of
the T ′5V amplitude given diagrammatically in Fig. 5. We
again relegate details of its derivation to Appendix C and
note only that this representation, apart from the fully
one-shadow-irreducible gluon-exchange graphs in its 2nd

line, has a shadow-line content isolated in four terms: the
negative-shadow term in the first line, which is identical
to the i = 1 term in the 2nd line of (3.6) and will play
a special role by supplying in Fig. 2 the singularities of
V4V in its p 2

1 variable, and the 3 negative terms in the
last two lines, which involve a 3-gluon-1-shadow auxiliary
amplitude Ξn as defined in Fig. 7.

(6) Lastly, we should introduce Fig. 1(b) into the (C)4,
(C ′)4, and (C ′′)4 terms of Fig. 2. This will turn each of
them into a graph having a V4V instead of T ′4V , plus a
pair of one-shadow-irreducible gluon-exchange terms giv-
ing equal contributions and for which the factor of 1

2 there-
fore gets cancelled, plus a negative term with one shadow
line, as displayed in Fig. 8. (Note that an ordinary gluon
line connecting to at least one bare vertex, such as the
Γ

(0)pert
4V in Fig. 8, has no shadow content).

(7) In the crucial step of the argument, we now refer
back to the three-point vertex equation, maintaining for
consistency the simplifications analogous to those of step
(1) above, and again feed the assertion of Fig. 1 into the
T ′4V term of that equation (term (A)3 in Fig. 1 of [2]).
We then take residues with respect to the squared mo-
mentum of one of the two external legs other than the
“distinguished” leg entering from the left (one of the vari-
ables p 2

1 or p 2
3 in Fig. 1 of [2]). Note that this kind of

residue information stood unused so far, since in [2] we
only exploited residue comparison with respect to the dis-
tinguished leg. The result is the diagrammatic relation of
Fig. 9, a DS equation of sorts for the partial amplitudes
Bn (n ≥ 1) of Γ3V . (If we do not invoke the simplifications,
this relation of course gets additional ghost-loop, fermion-
loop, and two-gluon-loops terms with their own Ξ-type
amplitudes, as alluded to in the last line of Fig. 9).
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Fig. 5. Another representation of the T ′5V ampli-
tude. The Ξ amplitudes in the last two lines are
defined by Fig. 7

But this relation is precisely what is needed to turn the
3 negative shadow-line terms which arose in step (6) from
the (C)4 through (C ′′)4 terms of Fig. 2, plus the 3 negative
Ξ terms that arose from term (A)4 upon insertion of the Ξ
graphs of Fig. 5, into the 3 negative one-shadow terms on
the r.h.s. of Fig. 1(a). We have therefore attained our goal:
we have shown that upon introducing the decomposition
of Fig. 1(a) with its 3 compensating-pole terms, either di-
rectly or through its immediate consequence of Fig. 1(b),
into wherever a four-point building block occurs in the in-
teraction terms of Fig. 2, these interaction terms cooperate
so that their sum splits off explicitly those 3 compensating
terms again. Note that in so doing we appealed to residue
information not only from the lower (3-point and 2-point)
DS equations, but now also from the 4-point equation it-
self, which led us to infer the shadow-reducibility structure
(3.6) of the next higher, 5-gluon vertex.

We may now cancel the 3 compensating terms on both
sides of the Γ4V equation and thus establish the DS equa-
tion of Fig. 10 for the reduced vertex V4V , which is the
main result of this section.

(8) As a by-product, we may rewrite (3.6) for the
shadow content of Γ5V . To each of the 10 terms with nega-

tive signs in the second line, we may add a triplet of terms
of structure

∑
m Γ3VDBmSmBm, with one ordinary-gluon

and one shadow line, such that the resulting quartet of
terms form precisely the set of compensating poles needed
to cancel the four shadow lines present in the one-gluon-
exchange diagram {Γ3V DΓ4V }i of the full connected-
and-amputated 5-gluon amplitude T5V (one along the D
propagator line, the other three hidden, by Fig. 1(a),
in the Γ4V vertex). The same 30 terms, now regrouped
into 15 suitable pairs, may then be subtracted from the
15 terms in the third line of (3.6), and it is straightfor-
ward to check with the aid of Fig. 6(b) that each re-
sulting triplet then forms the set of compensating poles
needed to cancel the one two-shadows term and two single-
shadow terms present in a double-gluon-exchange diagram
{Γ3VDΓ3VDΓ3V }k of T5V . Since the total operation has
not changed the equation, we conclude, with a view to
(C.1) of the Appendix, that

Γ5V = V5V +
[
complete set of compensating poles for

all 25 one-gluon-reducible terms of T5V

]
. (3.8)

Thus the final result for the next higher amplitude is again
simple: the full T5V is completely one-shadow irreducible,
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Fig. 6. Definition of (a) single and (b) double
1-shadow-irreducible (“softened”) gluon exchanges,
marked by dots, through extraction of shadow terms
from ordinary single and double gluon exchanges

Fig. 7. Definition of 3-gluon-1-shadow auxiliary am-
plitudes Ξ

consisting as it does of a V5V with full extended irre-
ducibility, plus 25 “softened” (i.e. one-shadow irreducible)
but still one-gluon reducible diagrams.

(9) Finally note that term (A1)4 of the reduced V4V

equation of Fig. 10, upon taking residues at its horizontal-
channel shadow poles and invoking once again the Γ [r,0]

2V

self-consistency conditions, instantly reproduces the E[r]
n

terms with n ≥ 1 of the p.f. decomposition (2.31). The
remaining, further-reduced equation for the partial ampli-
tude E[r]

0 of (2.31) at r = 1 is what we shall work with in
practice; it should be kept in mind that this equation still
has a term comprising the regular-at-poles remainders of
(A1)4 of Fig. 10.
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Fig. 8. Decomposition of the (C)4 term of Fig. 2, ob-
tained by use of Fig. 1(b)

Fig. 9. DS-like integral equation for partial amplitudes Bn
(n ≥ 1) of 3-gluon vertex Γ3V . The auxiliary amplitude Ξ in
the second line is defined in Fig. 7

4 Self-consistency conditions

4.1 The overdetermined system

A glance at Fig. 10 shows that the reduced DS equation
for V4T , or for its E0,T component, is linear in the four-
point unknowns, though still nonlinear in the “lower”, 2-
and-3-point vertices. This simplification results from (i)
the restriction to a one-loop calculation and (ii) our use of
the ordinary DS system without Bethe-Salpeter resumma-
tion. The self-consistency equations for the ζ coefficients of
(2.20) will thus form a linear system but with a matrix (de-
termined by the divergent parts of diagrams (A1)4, (A3)4,
and (C2)4 of Fig. 10) and with inhomogeneous terms (de-
termined by the divergent parts of the other diagrams of
Fig. 10) depending nonlinearly on the 2-point and 3-point
coefficients.

As discussed in [2], the zeroth-order self-consistency
system as a whole exhibits a scaling property, arising from
the scheme- insensitive character of the self-reproduction
mechanism. It implies that the system only determines
ratios of the nonperturbative coefficients to certain fixed
powers of one of them. The latter, by convention, was
chosen to be x1, a coefficient of the 3-transverse-gluons
vertex. We need to maintain this convention for the 4-
gluon quantities; thus for the parametrization (2.20) we
introduce rescaled parameters

Λ̃2 = |x1|Λ2 , ζ̃i = ζi/|x1|ni (i = 1 . . . 17) , (4.1)

where the integers ni are,

n1 = n7 = n13 = 1 ,
n2 = n3 = n6 = n8 = n9 = n12 = n14 = n17 = 2 ,
n4 = n10 = n15 = 3 ,
n5 = n11 = n16 = 4 . (4.2)

All RG-invariant masses are obtained in terms of Λ̃2 rather
than Λ2.

For the actual evaluation of the zeroth-order terms
of diagrams (A1)4, (A3)4, (C2)4 of Fig. 10, one uses
parametrization (2.27) with its independent tensors and η
coefficients. In contrast to what happens (at level r = 1)
in the 3-point systems, the immediate self- reproduction
of the entire p 2

1 -singular portion E1,T of (2.31), achieved
by extracting the pole term at p 2

1 = −u2Λ
2 = −ũ2Λ̃

2

from diagrams (A1)4 and appealing to the 2-gluon self-
consistency conditions, is found not to provide substan-
tial relief for the overdetermination caused by the lack
of manifest Bose symmetry. After reimposing the symme-
try by expressing all η’s in terms of the ζ coefficients of
the fully Bose- symmetric form (2.20), one is still faced
with 54 linear equations for these 17 basic coefficients,
with matrix elements and inhomogeneities depending non-
linearly (though polynomially) on the lower-vertex coef-
ficients. The complete system [3] is too lengthy to be
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Fig. 10. DS equation for reduced 4-gluon vertex
V4V , obtained from Fig. 2 upon using Figs. 5, 8, and 9

listed here; we have therefore chosen to make it acces-
sible through an electronic archive [8]. To convey an im-
pression of its structure, we write here just one typical
equation: self-reproduction of the coefficient ηA,0,4 in the
invariant function (2.28) associated with the C(A) ⊗ L(0)

tensor structure gives, after conversion to ζ’s by means
of Appendix B.2 and multiplication by β0 and u 2

3 , the
condition

9
2
(
u3

2x3

)
ζ1 +

9
2

(
3
8
u3

2 − u3x4

)
ζ2

+
3
2

(
(
9
8
− β0)u3

2 − 3
2
u3x4

)
ζ3

+
27
4

(u3x1) ζ4 +
9
4

(
3
2
u3

2 + u3x4

)
ζ6

+
3
2

(
(−9

4
+ β0)u3

2 − 3
2
u3x4

)

× (ζ8 − 2ζ9 + 2ζ12 − ζ14 + ζ17)

+u3

(
99
4
x1 −

15
8
x3 −NF z3

)
(ζ10 − ζ15)

= 9
(
−3

2
u3

2x3
2+4u3x1x3x4+(

1
2
u3−x2)x4

2−2x1x4x5

)
+NF

(
u3

w3

)2 2
3
z4 (w3z1z3 − w3z4 + z1z5 − z2z4) . (4.3)

Here NC = 3 has been used. The NF factors identify
contributions from the quark-loop diagrams (E1)4, (E1′)4

and from the one in (A1)4 of Fig. 10. Note that for the
quark-vertex coefficients zi, the simplified numbering of
(4.6) of [2] has been employed.

As far as we are aware, no presently existing math-
ematical software tool for nonlinear algebraic systems is
capable of dealing directly with a system of this size and
complicated, partially overdetermined structure. The only
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strategy currently practical for dealing with the total sys-
tem is to take advantage of the “near decoupling” of the
4-point system: of the 17 ζ coefficients, only two combina-
tions, Z1 and Z2, enter the 2-and-3- point system (through
some of the 3-gluon vertex conditions). One then treats
these as additional unknowns in the lower-vertices system
and, after invoking the scaling property, determines them
to within an one-parameter freedom. Subsequently, their
definitions are appended to the linear system for the 4-
point ζ’s as two extra conditions, bringing the total to 56
equations: this represents only a minor increase in the any-
way massive overdetermination of that system. The extra
equations are, in rescaled form,

15
32
(
3ζ̃1 − ζ̃7

)
= Z̃1 =

Z1

x1
(4.4)

15
32
(
3ζ̃2 + 3ζ̃3 − ζ̃8 − ζ̃9

)
= Z̃2 =

Z2

x 2
1

, (4.5)

where the Z̃1, Z̃2 on the r.h.s. stand for the values pro-
duced by the lower-vertices system. The structure of the
four-point system then is,

17∑
k=1

Mik

(
{ũ}, {w̃}; {x̃}, {z̃}

)
ζ̃k = bi

(
{ũ}, {w̃}; {x̃}, {z̃}

)
(i = 1 . . . 56) , (4.6)

where the 56× 17 matrix M , as well as the 56-component
inhomogeneity b, depend nonlinearly on the rescaled co-
efficient sets {ũ}, {w̃} of the gluon and quark two-point
functions and on the sets {x̃}, {z̃} of the gluon and quark
three-point functions. Exceptions are the 55th and 56th
rows of M , given by the l.h. sides of (4.4/4.5), which con-
tain only pure numbers.

For a quasi-solution in the least-squares sense, one
minimizes the quadratic deviation between both sides of
(4.6). The conditions

∂

∂ζ̃n

{ 56∑
i=1

(∑
k

Mik ζ̃k − bi
)2} = 0 (n = 1 . . . 17) (4.7)

lead, in standard fashion, to a linear system with the 17×
17 matrix MTM ,

17∑
k=1

(
MTM

)
nk
ζ̃k =

(
MT b

)
n

(n = 1 . . . 17) . (4.8)

Although the structure of M is too complicated to be han-
dled analytically, we have checked numerically that in the
physically acceptable parameter range where all 2-and-
3-point coefficients are real, the matrix MTM is always
invertible. (The calculations have been performed using
the MAPLE V computer-algebra system). As a measure
of the deviation one may consider

χ =

√√√√ 1
56

56∑
i=1

(∑
k

Mik ζ̃k − bi
)2

(4.9)

as compared to a typical r.h.s. or l.h.s. of (4.6). Also,
the quantities Z̃1, Z̃2 when recalculated from the quasi-
solution according to (4.4/4.5) will be different from their
input values from the lower-vertices system, and the differ-
ences may serve as rough indicators of the overall degree
of difficulty in satisfying zeroth-order self-consistency re-
quirements from (ordinary) DS equations with the rather
simple structure of the r = 1 set of approximants. If
they are large, one may alternatively try to enforce con-
ditions (4.4/4.5) exactly by assigning a large weight w
(e.g. w = 1000) to the i = 55 and i = 56 terms of (4.7).
The Z1,2 from the two systems will then match, but the
quality of the 54-term remainder solution will in general
deteriorate.

4.2 Typical solution for NF = 2

The entire system of course shares the effective one-
parameter freedom from the “decoupled” lower-vertices
system. In the presence of fermions, this was parametrized
[2] by the coefficient w̃1. We only consider here the physi-
cally most interesting parameter range where not only all
vertex coefficients are real, but also the values of the self-
energy coefficients u, w imply the presence of a complex-
conjugate pole pair in both the gluon and the fermion
propagator. Over this range, as noted earlier, most of the
other coefficients of the system do not vary substantially.

Table 1 gives least-squares values of the rescaled coeffi-
cients ζ̃ corresponding to the “typical” solution of Table 1
of [2], which at | w1 |=| w2 |= 0.6749 (the signs of w1, w2

do not affect the 4-point system) is in about the middle
of this parameter range. The two solutions shown are ob-
tained either without extra weighting (w = 1) or with
exact enforcement (w = 1000) of the 55th and 56th condi-
tions. The resulting coefficients are generally rather large
in absolute value, given the fact that from their very con-
text one would expect them to be numbers of order unity
(give or take an order of magnitude). This may partly be
attributed to the choice of basis – the factors of 1

4 ,
1
6 ,

1
12

in the tensors (2.18/2.19) employed in the Wn building
blocks – and to the rescaling (4.1): it is conspicuous that
the large coefficients mostly have large exponents ni in
(4.2). Although these effects may account for one to two
orders of magnitude, several coefficients still remain im-
plausibly large. We interpret this as the direct result of
the considerable “pressure” generated by the overdeter-
mination of the system.

The typical 2-and-3-point solution of [2] implies values
of

Z̃1 = 157.9, Z̃2 = 156.2 (NF = 2) (4.10)

for the parameter combinations of (4.4/4.5) respectively.
When not enforced (i.e. at w = 1), their values recal-
culated from the ζ̃ ′s of Table 1, −335.95 and −165.07,
are strongly mismatched and even of the opposite sign.
It is then hardly surprising to find that this solution has
χ ≈ 317 in the sense of (4.9) – of the same magnitude as,
or even slightly larger than, a typical |bi| in (4.6), which
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Table 1. Coefficients ζ̃n for NF = 2 at typical value w̃1 = 0.67

n 1 2 3 4 5 6 7 8 9

ζ̃n (w = 103) 56.22 646.67 −513.11 611.96 962.88 271.12 −168.19 −803.84 871.27

ζ̃n (w = 1) −181.48 −98.04 −113.83 297.85 −2747.9 −37.55 172.27 −319.20 35.75

n 10 11 12 13 14 15 16 17

ζ̃n (w = 103) 64.77 438.55 −202.04 −510.04 84.67 −561.86 −7481.9 209.80

ζ̃n (w = 1) 1318.4 −1757.5 −26.14 76.28 190.68 367.79 5446.0 −317.7

Table 2. Coefficients ζ̃n for pure-gluon theory at typical value x̃3 = 1.0

n 1 2 3 4 5 6 7 8 9

ζ̃n (w = 103) 0.814 6.439 −4.733 −57.35 350.05 −3.057 8.672 −30.03 0.931

ζ̃n (w = 1) −0.432 9.285 −4.789 −54.834 255.08 −2.512 6.398 −21.50 1.275

n 10 11 12 13 14 15 16 17

ζ̃n (w = 103) 96.02 −328.14 −0.060 3.354 −4.212 13.74 −121.67 −9.060

ζ̃n (w = 1) 56.75 −110.07 −0.518 2.595 0.461 −19.15 124.0 −8.744

is exemplified by (4.10) and of the order of a hundred.
Enforcing the values (4.10) would then be expected to
strongly alter the solution, which is indeed what happens
– several of the coefficients even change signs, and χ de-
teriorates further to ≈ 349. This is in marked contrast to
the purely gluonic case discussed in the next subsection,
and implies that in the presence of (massless) fermions the
4-point solution at the r = 1 level is probably a poor one.
The presence of the massless-quark DS loops evidently
makes the total system at low r much harder to satisfy;
in particular these loops seem to work in the direction of
forcing a mismatch at the (2+3)-point-to-4-point interface
that can be alleviated only gradually at higher r.

4.3 Typical solution for pure-gluon theory

For pure Yang-Mills theory (NF = 0) the typical solu-
tion, now parametrized by the gluonic coefficient x̃3 as
discussed in [2] and taken at x̃3 = 1, leads to the 4-point
ζ̃ ’s given in Table 2.

Two features deserve comment. First, the coefficients
overall are of a distinctly more plausible order of mag-
nitude, entirely understandable from the above-discussed
simple mechanisms; in particular, the three coefficients of
sizes more than a hundred are precisely those with ni = 4
in (4.2). Second, and more remarkably, the input Z̃1,2 val-
ues from the lower-point system,

Z̃1 = −2.92, Z̃2 = 16.04 (NF = 0) (4.11)

are matched reasonably well by the four-point quasisolu-
tion even for w = 1, i.e. without being enforced exactly:
when recalculated they come out as -3.60 and +15.80 re-
spectively. Moreover, the χ value of ≈ 0.11 is now only
about ten percent of the typical |bi| of (4.6), which in
this case is of order unity. Exact enforcement of the val-
ues (4.11) then leads to no appreciable deterioration in χ.

This gives one confidence that for the pure Yang-Mills sys-
tem the least-squares, four-point quasisolution does work
reasonably well even on the r = 1 level of approximation –
better, in fact, than one would expect in view of the still
very simple and rigid structure of approximants at this
level.

5 Conclusion

We have verified that self-consistent determination of a
generalized Feynman rule for the highest superficially di-
vergent and kinematically most complex QCD vertex is
possible in principle, provided the overdetermination re-
sulting from lack of manifest Bose symmetry in the rele-
vant DS equation is dealt with by a least-squares proce-
dure. Within the well-defined and clearly visible limita-
tions of our calculation, available indicators suggest that
the least-squares solution at level r = 1 is good for the
pure gluon theory but quantitatively poor in the presence
of massless quarks. For the Yang-Mills theory, the gen-
eralized Feynman-rule system determined in [2] and the
present paper should be adequate, in spite of the low ap-
proximation order r = 1, as a basis for semi-quantitative
calculations. For the system with massless quarks, in view
of the large approximation errors found both here and
in [2], the results do not yet seem sufficient to us for
such applications; here we view our work as no more
than a demonstration of technical feasibility of the self-
consistency procedure as such.

Among the limitations, the one most obviously in need
of improvement may be the use of an “ordinary” DS sys-
tem: starting from BS-resummed dynamical equations (for
amplitudes with three and more legs) would effectively
shift more important physical effects into the lower loop
orders, and would thereby give a one-loop self-consistency



416 L. Driesen, M. Stingl: Extended iterative scheme for QCD: the four-gluon vertex

calculation a better chance to succeed. It would also pro-
vide partial (though not complete) relief from the pres-
sures of overdetermination: in BS-resummed equations the
fraction of terms on the r.h.s. of a DS equation which are
manifestly Bose symmetric individually, or can be grouped
into manifestly symmetric subsets, is generally increased,
so that one expects fewer symmetry-violating terms to be
generated. Use of a tensor basis larger than our “dynam-
ically minimal” one may not mitigate the overdetermina-
tion substantially, as it would also increase the number
of self-consistency conditions, but would be necessary in
order to allow dabc color dependence in the three-gluon
vertex to be treated consistently. Going beyond the r = 1
and l = 1 levels of approximation would have the algebraic
complication rising steeply, as usual in iterative schemes
for QFT, but is presumably the only consistent way of
better satisfying perturbative limits and other desirable
secondary conditions.

One possible strategy of improvement for the unsat-
isfactory situation with massless quarks may be to recall
that a necessity (for self-consistency) of using approxi-
mants of the same order for all coupled vertex functions
strictly speaking exists only within one type of external
leg or elementary field. In particular it is possible, and
would create no fundamental problems of consistency, to
combine rational-approximation order r = 3 for fermionic
legs (in the sense defined in Appendix (A.3/A.4) of [1],
i.e. with respect to matrix-valued variables p/) with the
r = 1 approximation for bosonic legs as studied here. As
the present study has shown, about ninety percent of the
algebraic complication and computational effort for the
total self-consistency system are caused by the four-gluon
vertex alone; the fermion sector has no superficially di-
vergent four-point or other amplitude of comparable dif-
ficulty. This type of improvement is therefore much more
feasible than a full r = 3 calculation for all legs, and would
seem to deserve priority in a further development of the
method.

Appendix A Absence of non-compensating
zeroth-order poles

Here we ask whether the four-gluon generalized Feynman
rule Γ [r,0]

4V may contain, in addition to the “compensating”
poles in its three crossed color-octet channels as identified
in sect. 2.2 and made explicit in (1.1), still other poles
of zeroth perturbative order in its Mandelstam variables.
Such poles would be absent in the perturbative limit Λ→
0, so their residue factors would be proportional to at least
one power of Λ. In e.g. the s channel, such a pole would
be of the form

ΛΦT (p1, p2)ΛΦ(p3, p4)
P 2 + bΛ2

(A.1)

with a dimensionless residue function (or vector of func-
tions) Φ carrying the color and Lorentz quantum numbers
of the channel considered. This contrasts with the case
of the compensating pole, where residue comparison in

Fig. 11. Diagrammatic representation of Bethe-Salpeter nor-
malization condition. The partial differentiations with respect
to Pµ act on the portions in dashed brackets

the Γ3V equation forces the residue factors to be propor-
tional to Bn’s – quantities of mass dimension +1 which by
themselves need not vanish as Λ→ 0 since in their defin-
ing equation ((2.15) of [2]) they are already accompanied
by a Λ2 factor.

The Bethe-Salpeter amplitudes ΛΦ must satisfy a well-
known normalization condition [9], which in a condensed
notation, and again in the most simplified form omitting
ghost and fermion terms, reads

{
g2

0

1
2

∫
ΛΦ
( ∂

∂Pµ
(
DD

))
ΛΦ

}
P 2=−bΛ2

+
{
g4

0

1
4

∫ ∫
ΛΦ
(
DD

)( ∂

∂Pµ
Ks

)(
DD

)
ΛΦ

}
P 2=−bΛ2

= −2Pµ. (A.2)

This is depicted in Fig. 11. Fulfillment of this condition
by purely zeroth-order quantities is possible only if the
loop integrals on the l.h.s. diverge and thereby trigger the
divergence-related 1/g2 mechanism. With the Φ functions
behaving at worst like constants at large loop momenta q,
and with the easily checked behavior of

∂

∂Pµ
(
DD

)
= O(q−5),

∂

∂Pµ
Ks = O(q−1) (A.3)

(note that terms in Ks behaving like constants at large q’s,
such as the Γ (0)pert term, drop out after differentiation),
it is however clear that the integrals are convergent, and
do not provide the 1

ε factors necessary for the mechanism
to work. Thus poles of type (A.1) in T

[r,0]
4V are ruled out.

Note that the “compensating” poles, by contrast, can
satisfy (A.2) as zeroth-order quantities, since there ΛΦ is
replaced by a Bn (compare (2.22) of [2]) which at large q
behaves like q1, and therefore provides divergences on the
l.h.s. of (A.2).

Note also that if one does not insist on the Φ being
quantities of zeroth perturbative order, (A.2) may be sat-
isfied, at suitable eigenvalues −bΛ2 of P 2, by quantities
which have no overall Λ factor but are power series start-
ing at least at first order in g2. This, as emphasized in the
introduction, is the case for ordinary bound-state poles,
which arise from a Bethe-Salpeter partial resummation of
the perturbation series for Γ4V .



L. Driesen, M. Stingl: Extended iterative scheme for QCD: the four-gluon vertex 417

Appendix B Parametrizations of the reduced
four-gluon vertex

Appendix B.1 Building blocks for the symmetric
parametrization

To list the building blocks W
[1,0]
n of the fully Bose-

symmetric V4V representation (2.20), we use the following
combinations of single-pole quantities (2.13):

G(1)(p 2
1 . . . p

2
4 ) = Π1 +Π2 +Π3 +Π4 ; (B.1)

G(2s)(p 2
1 . . . p

2
4 ) = Π1Π2 +Π3Π4,

G(2u)(p 2
1 . . . p

2
4 ) = Π1Π3 +Π4Π2 ,

G(2t)(p 2
1 . . . p

2
4 ) = Π1Π4 +Π2Π3 ; (B.2)

G(3)(p 2
1 . . . p

2
4 ) = Π1Π2Π3 +Π1Π2Π4

+Π1Π3Π4 +Π2Π3Π4 ; (B.3)
G(4)(p 2

1 . . . p
2
4 ) = Π1Π2Π3Π4 . (B.4)

Here G(1), G(3), and G(4) are Bose-symmetric in them-
selves, while G2s, G2u, and G2t form a crossing triplet. In
terms of these,

W
[1,0]
1 : =

{
C(S)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
G(1) ; (B.5)

W
[1,0]
2 : =

{
C(S)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
×
(
G(2s) +G(2u) +G(2t)

)
; (B.6)

W
[1,0]
3 : =

{
C(S)

[
L(3) − 2L(1) + L(2)

]
×
[
G(2t) − 2G(2s) +G(2u)

]}
+
(
perms. s→ u, s→ t

)
; (B.7)

W
[1,0]
4 : =

{
C(S)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
G(3) ; (B.8)

W
[1,0]
5 : =

{
C(S)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
G(4) ; (B.9)

W
[1,0]
6 : =

{1
4
C(1)

[
L(1) + L(2) + L(3)

]
×
[
G(2t) − 2G(2s) +G(2u)

]}
+
(
perms. s→ u, s→ t

)
; (B.10)

W
[1,0]
7 : =

{1
4
C(1)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
G(1) ; (B.11)

W
[1,0]
8 : =

{1
4
C(1)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
×
(
G(2s) +G(2u) +G(2t)

)
; (B.12)

W
[1,0]
9 : =

{1
4
C(1)

[
L(3) − 2L(1) + L(2)

]
×
[
G(2t) − 2G(2s) +G(2u)

]}
+
(
perms. s→ u, s→ t

)
; (B.13)

W
[1,0]
10 : =

{1
4
C(1)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
G(3) ; (B.14)

W
[1,0]
11 : =

{1
4
C(1)

[
L(3) − 2L(1) + L(2)

]
+
(
perms. s→ u, s→ t

)}
G(4) ; (B.15)

W
[1,0]
12 : =

{1
4
C(1)

[
L(1) + L(2) + L(3)

]
×
[
G(2t) − 2G(2s) +G(2u)

]}
+
(
perms. s→ u, s→ t

)
; (B.16)

W
[1,0]
13 : =

1
4
[
C(1) + C(2) + C(3)

]
×
[
L(1) + L(2) + L(3)

]
G(1) ; (B.17)

W
[1,0]
14 : =

1
4
[
C(1) + C(2) + C(3)

] [
L(1) + L(2) + L(3)

]
×
[
G(2t) +G(2s) +G(2u)

]
; (B.18)

W
[1,0]
15 : =

1
4
[
C(1) + C(2) + C(3)

]
×
[
L(1) + L(2) + L(3)

]
G(3) ; (B.19)

W
[1,0]
16 : =

1
4
[
C(1) + C(2) + C(3)

]
×
[
L(1) + L(2) + L(3)

]
G(4) ; (B.20)

W
[1,0]
17 : =

1
4
[
C(1) + C(2) + C(3)

]
×
{ [
L(3) − 2L(1) + L(2)

]
G(2s)

+
(
perms. s→ u, s→ t

)}
. (B.21)

Appendix B.2 Relation between parametrizations

To obtain the expressions for the η parameters of (2.28)
and (2.29) in terms of the 17 ζ coefficients, one rewrites the
W

[1,0]
n building blocks (as listed above) in (2.20) in terms

of the linearly independent color tensors (2.22/2.23) and
the s-channel-adapted Lorentz tensors (2.24/2.25) and
compares coefficients with (2.27). The ensuing relations
are,

ηA,0,1 = −3
2
ζ 7 +

3
2
ζ 13 (B.22)
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ηA,0,2 = −3
4
ζ 3 −

3
2
ζ 8 −

3
2
ζ 9

+
3
2
ζ 12 +

3
2
ζ 14 +

3
4
ζ 17 (B.23)

ηA,0,4 =
3
2
ζ 3 −

3
2
ζ 8 + 3 ζ 9 − 3 ζ 12

+
3
2
ζ 14 −

3
2
ζ 17 (B.24)

ηA,0,5 = −3
2
ζ 10 +

3
2
ζ 15 (B.25)

ηA,0,6 = −3
2
ζ 11 +

3
2
ζ 16 (B.26)

ηA,+,1 = −1
2
ζ 7 +

1
2
ζ 13 (B.27)

ηA,+,2 =
1
4
ζ 3 +

1
2
ζ 8 +

1
2
ζ 9

+
1
2
ζ 12 +

1
2
ζ 14 −

1
4
ζ 17 (B.28)

ηA,+,4 = −1
2
ζ 3 +

1
2
ζ 8 − ζ 9 − ζ 12

+
1
2
ζ 14 +

1
2
ζ 17 (B.29)

ηA,+,5 =
1
2
ζ 10 +

1
2
ζ 15 (B.30)

ηA,+,6 =
1
2
ζ 11 +

1
2
ζ 16 (B.31)

ηA,−,3 =
3
4
ζ 3 −

3
4
ζ 17 (B.32)

ηB,0,1 =
3
4
ζ 7 +

3
2
ζ 13 (B.33)

ηB,0,2 = −3
4
ζ 3 +

3
4
ζ 8 −

3
8
ζ 9

−3
4
ζ 12 +

3
2
ζ 14 +

3
4
ζ 17 (B.34)

ηB,0,4 =
3
2
ζ 3 +

3
4
ζ 8 +

3
4
ζ 9

+
3
2
ζ 12 +

3
2
ζ 14 −

3
2
ζ 17 (B.35)

ηB,0,5 =
3
4
ζ 10 +

3
2
ζ 15 (B.36)

ηB,0,6 =
3
4
ζ 11 +

3
2
ζ 16 (B.37)

ηB,+,1 = −1
4
ζ 7 +

1
2
ζ 13 (B.38)

ηB,+,2 =
1
4
ζ 3 −

1
4
ζ 8 +

1
8
ζ 9

−1
4
ζ 12 +

1
2
ζ 14 −

1
4
ζ 17 (B.39)

ηB,+,4 = −1
2
ζ 3 −

1
4
ζ 8 −

1
4
ζ 9

+
1
2
ζ 12 +

1
2
ζ 14 +

1
2
ζ 17 (B.40)

ηB,+,5 = −1
4
ζ 10 +

1
2
ζ 15 (B.41)

ηB,+,6 = −1
4
ζ 11 +

1
2
ζ 16 (B.42)

ηB,−,3 =
3
4
ζ 3 +

9
8
ζ 9 −

3
4
ζ 17 (B.43)

ηC,0,3 = −9
8
ζ 9 −

9
4
ζ 12 (B.44)

ηC,+,3 =
3
8
ζ 9 −

3
4
ζ 12 (B.45)

ηC,−,1 = −3
4
ζ 7 (B.46)

ηC,−,2 = −3
4
ζ 8 +

3
8
ζ 9 (B.47)

ηC,−,4 = −3
4
ζ 8 −

3
4
ζ 9 (B.48)

ηC,−,5 = −3
4
ζ 10 (B.49)

ηC,−,6 = −3
4
ζ 11 (B.50)

ηD,0,3 =
9
4
ζ 3 +

9
2
ζ 6 (B.51)

ηD,+,3 = −3
4
ζ 3 +

3
2
ζ 6 (B.52)

ηD,−,1 =
3
2
ζ 1 (B.53)

ηD,−,2 =
3
2
ζ 2 −

3
4
ζ 3 (B.54)

ηD,−,4 =
3
2
ζ 2 +

3
2
ζ 3 (B.55)

ηD,−,5 =
3
2
ζ 4 (B.56)

ηD,−,6 =
3
2
ζ 5 (B.57)

ηE,0,1 = −3
2
ζ 1 (B.58)

ηE,0,2 = −3
2
ζ 2 −

3
4
ζ 3 +

3
2
ζ 6 (B.59)

ηE,0,4 = −3
2
ζ 2 +

3
2
ζ 3 − 3 ζ 6 (B.60)

ηE,0,5 = −3
2
ζ 4 (B.61)

ηE,0,6 = −3
2
ζ 5 (B.62)

ηE,+,1 =
1
2
ζ 1 (B.63)

ηE,+,2 =
1
2
ζ 2 +

1
4
ζ 3 +

1
2
ζ 6 (B.64)

ηE,+,4 =
1
2
ζ 2 −

1
2
ζ 3 − ζ 6 (B.65)

ηE,+,5 =
1
2
ζ 4 (B.66)

ηE,+,6 =
1
2
ζ 5 (B.67)

ηE,−,3 = −3
4
ζ 3 . (B.68)
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Appendix C Representations of the amplitude
T ′5V

Here we sketch derivations for two different representa-
tions of the partially irreducible 5-gluon amplitude T ′5V
needed in the argument of sect. 3.

(1) To establish the representation given in Fig. 3,
start from the full connected and amputated 5-gluon
amplitude (off-shell 5-gluon T matrix), T5V . It has 25
one-gluon-reducible terms (dressed tree diagrams): one
of structure Γ3V DΓ4V , reducible along a single internal
gluon line, for each of the 10 different 2+3 partitions (or
2V ↔ 3V channels) of the 5 legs, and one of structure
Γ3V DΓ3V DΓ3V , reducible along two different internal
lines, for each of the 15 different 2+1+2 partitions of the
5 legs. In the condensed notation adopted for (3.6), we
have

T5V = Γ5V

+
10∑
i=1

{
Γ3V DΓ4V

}
i

(C.1)

+
15∑
k=1

{
Γ3V DΓ3V DΓ3V

}
k
.

Of these one-gluon-reducible terms, 13 are reducible in at
least one of the four channels (3.1/3.2), and therefore by
definition are to be excluded from the T ′5V amplitude, leav-
ing the latter to consist of the fully one-gluon-irreducible
piece (proper vertex) Γ5V , plus 12 dressed-tree diagrams
still reducible in other channels – 6 from the second and
6 from the third line of (C.1).

The 6 one-gluon exchange terms from the second line
of (C.1) are those in which one of the two legs no. 5 and
6 entering from the left in Fig. 3 connects to the Γ3V ,
while the other connects to the Γ4V . The 3 terms in which
leg no. 6 connects to a Γ3V constitute the second line of
Fig. 3. The 3 terms in which leg no. 5 connects to the
Γ3V may each be taken together with a suitable pair from
among the 6 terms retained of the third line of (C.1), in
such a way as to replace their Γ4V ’s with T ′4V ’s whose
primes refer to the channels defined by their external-line
pairs. (Remember that, by definition, T ′4V = Γ4V plus
2 one-gluon exchange terms in the channels other than
the distinguished channel to which the prime refers). This
establishes the third line of Fig. 3.

Of course, in this regrouping the roles of legs 5 and 6
may be interchanged, leading to a representation equiv-
alent to Fig. 3 in which the T ′4V ’s and Γ4V ’s have their
roles exchanged. This explains the apparent asymmetry
of Fig. 3.

(2) The representation of T ′5V given in Fig. 5 is es-
tablished by (i) applying the decomposition of (3.6) to
the Γ5V in the first line of Fig. 3, (ii) inserting the de-
compositions of Fig. 1(a) and Fig. 1(b) into the Γ4V and
the T ′4V terms of Fig. 3 respectively, and (iii) performing

decompositions of the remaining ordinary gluon lines into
“softened” one-gluon exchanges and shadow-pole terms as
indicated in Fig. 6. (As for Fig. 6(b), it lumps together for
simplicity two decompositions, corresponding to its first
and second lines, that actually occur separately). The six
last terms of Fig. 3 then give rise to:

(a) 6 softened one-gluon-exchange graphs of the type
of term (B) of Fig. 6, shown in the second line of Fig. 5,

(b) 6 graphs with two softened one-gluon exchanges
each, of the type of term (E) of Fig. 6, also shown in the
second line of Fig. 5,

(c) 6 one-shadow-line graphs as in term (C) of Fig. 6,
which cancel 6 of the 10 negative terms coming from the
second line of the Γ5V decomposition (3.6), leaving just
those four of the 10 negative terms that possess a shadow
line in one of the four channels (3.1/3.2),

(d) 12 graphs with two shadow lines each of the type
of term (H) of Fig. 6 – 9 from the Γ4V and 3 from the
T ′4V terms – with minus signs, which cancel 12 of the 15
terms from the third line of (3.6), leaving just those three
of the 15 terms that have one shadow in the “horizontal”
channel (3.1) and the other in one of the three “tilted”
channels (3.2),

(e) 18 graphs with one softened-gluon exchange and
one shadow line each: 12 with minus signs from both the
Γ4V and T ′4V terms, and 6 with plus signs from the T ′4V
terms alone, and which actually cancel 6 of the minus-sign
graphs, leaving a net count of 6 terms with one softened-
gluon and one shadow line and with minus signs.

Now the 6 terms surviving from (e), the 3 two-shadows
terms surviving from (d), and 3 of the 4 one-shadow terms
from (c) may be lumped together in three groups by defin-
ing the auxiliary amplitudes Ξn as in Fig. 7; they then give
the three graphs in the last two lines of Fig. 5. The one
remaining one-shadow graph with minus sign from (c) ap-
pears explicitly in the first line of Fig. 5, which is therefore
fully established.
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